Use of assigned reference values: Revisiting a small scale interlaboratory comparison for residual pesticides in tea

Della SIN & Y.C. WONG Government Laboratory (GLHK) Hong Kong, China

31th CITAC Members' Meeting, April 20th, 2016, Paris, France

- A proficiency testing programme (HKGL0903)
 [residues of organochlorine pesticides (a-endosulfan, b-endosulfan and endosulfan sulfate)
 in tea] organised in 2009
- Performance evaluation -
- z-scores, using consensus values and standard deviation that was estimated from the Horwitz equation
- assigned reference values derived from gas spectrometry-isotope dilution mass spectrometry with higher metrological traceability
- Observable differences
- Recommendations

About 7 kg of dried green tea samples (pre-screened to contain trace level of target pesticides) were ground to powder and filtered through 200 μm sieves. Fine tea powder was thoroughly mixed and about 20 g each was packed into a cleaned and nitrogen-flush amber glass bottle.

All bottles were capped, disinfected by γ -irradiation at a dose of about 1 kGy and stored at about 25 °C before dispatch to participants. Homogeneity and stability studies of the test materials were performed using an inhouse validated GC- μ ECD method and treatment of the respective analytical data was in accordance with ISO 13528:2005

Stability and homogeneity tests passed

Performance Evaluation

- two bottles of test material provided
- requested to determine the mass fraction (*mg*/kg) of the three pesticides in the sample as received Participants' *z*-scores were determined as:

$$z = (x_i - x) / \sigma_R$$

where

 $x_{\rm i}$ is participant's reported analytical data and x is consensus value $\sigma_{\rm R}$ was derived using the Horwitz function of 2 c $^{\rm o.85}$, where c is the mean concentration of analytes expressed as mass fraction in percent from the homogeneity study

Participant's methods

- Sample preparation: Extraction by mechanical shaking or ultrasonication with ethyl acetate and other commonly used solvents for OC pesticides (acetonitrile and dichloromethane) for the duration from 5 to 45 min
- Sample cleanup: none (1), GPC, SPE or both (6)
- Method used: GC-ECD (3), GC-MS (3) and both techniques (1)
- Majority of them used internal standards
- Extraction efficiencies with respect to the spike standards were reported ranging from 79 to 120 %

Performance of participants

i) α -endosulfan ii) β -endosulfan and iii) endosulfan sulfate Solid lines represent the consensus values, dotted lines embrace the conc. ranges within |z|=2, error bars represent U at 95 % confidence level (k = 2)

Summary of participants results in HKGL0903

Parameter	a-Endosulfan	b-Endosulfan	Endosulfan SO ₄
Data submitted (n)	7	7	7
Consensus value, x ± u(x) (mg/kg)	273 ± 75	556 ± 127	429 ± 127
Median (mg/kg)	272	530	445
Range (mg/kg)	196 - 372	278 - 777	196 - 741
Between-laboratory standard deviation (%)	28.9	23.9	31.0

u(x): Standard uncertainty of the consensus value estimated using the equation of 1.25 $\cdot \sigma / \sqrt{x}$ in accordance with ISO13528

Revisiting

- Duplicate analysis using GC-IDMS at 4 different days
- The mean assigned reference values were:
 - $346 \pm 18 \mu g/kg$ for α -endosulfan
 - $708 \pm 25 \mu g/kg$ for β -endosulfan
 - $464 \pm 17 \mu g/kg$ for endosulfan sulfate
- U was contributed by weighing of sample, standard solutions of the natural and labeled isotopes high purity (¹³C₉-α-endosulfan, ¹³C₉-β-endosulfan and ¹³C₉-endosulfan sulfate), purity of standards, and the bias of the peak area ratio of the natural and labeled isotopes respectively in the samples and calibrants

Percentage deviation of participants' results from the assigned reference values

the consensus values from participants: +27 % for both α - and β -endosulfan, and +8 % for endosulfan sulfate respectively when comparing with the GC-IDMS values

Lab	Deviation (%)			
	α -Endosulfan	β -Endosulfan	Endosulfan SO ₄	
1	-43.3	-60.7	-57.8	
2	7.6	9.7	59.7	
3	-21.3	-25.1	-4. 1	
4	-40.1	-29.1	-23.5	
5	-10.9	-13.1	-0.4	
6	-1.0	-11.3	9.7	
7	-37.2	-28.4	-19.8	

Assigned values vs Consensus values

Histograms of z-scores assessed by consensus (black columns) and assigned reference values (gray columns) for i) α -endosulfan, ii) β -endosulfan and iii) endosulfan sulfate. # denotes a questionable z-score and * an unsatisfactory z-score

Findings

- Observable differences 2 satisfactory z-scores became questionable and 2 questionable ones become 1 unsatisfactory and 1 satisfactory respectively. Overall, the laboratories that having either questionable or unsatisfactory changed from 2 to 3
- The majority were lower than the reference values, probably due to overestimated recoveries or incomplete
 extraction of residual pesticides.
- Unlike spike samples, a certain portion of incurred pesticide residues were absorbed and embedded within the plant matrices which could not be easily extracted by organic solvents alone.
- The underestimation of a wide variety of **incurred** pesticides in samples without hydration was found to be from 25 to 74 %.

Conclusions & Recommendations

- The present study is an illustrative example to show that although the operation of test materials and statistical analysis of the PT program met the stipulated international requirements; the outcome of participant's performance will be much influenced by the choice of assigned values.
- The 2010 official IUPAC/CITAC Guide consensus values are not suitable to evaluate participants' performance in terms of z-score with participation number fewer than thirty (n < 30).

Acknowledgements

 Thanks to Ms. Pat Chu and Ms. Janet Yeung of the Government Laboratory, and participants of HKGL0903

